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Abstract In this work, a sixth-order coupled Ramani equation is investigated. The
simplified form of the Hirota’s method is used for analytic treatment of this equation.
The constraint condition between coefficients of the spatial and the temporal vari-
ables is treated. Multiple soliton solutions and multiple singular soliton solutions are
formally derived for this model.

Keywords Coupled Ramani equation · Simplified Hirota’s method ·
Multiple soliton solutions

1 Introduction

In [1–8], the sixth-order nonlinear Ramani equation, that reads

uxxxxxx + 15ux uxxxx + 15uxx uxxx + 45u2
x uxx − 5(uxxxt

+3ux uxt + 3ut uxx )− 5utt = 0. (1)

was investigated for integrability, Lax pair, Bäcklund transformation. In [2], the
method of truncated singular expansion was used to derive Lax pair and Bäcklund
self-transformation for Eq. (1). In [4], Lax pairs and Bäcklund transformations were
used to handle (1).
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However, a specific case of a coupled Ramani equation given by

uxxxxxx + 15ux uxxxx + 15uxx uxxx + 45u2
x uxx − 5(uxxxt

+3ux uxt + 3ut uxx )− 5utt + 18wx = 0, (2)

wt − wxxx − 3wx ux − 3wuxx = 0. (3)

was investigated in [4–8] using different approaches.
Recently, a coupled Ramani equation of the form [1–8]

uxxxxxx + 15uxx uxxxx + 15u3
xx − 5uxxxt − 15uxt uxx − 5utt

+18(px − 3wxv + 3wvx ) = 0, (4)

pt − pxxx − 3uxx px + 3wxxvx − 3wxvxx = 0, (5)

vt − vxxx − 3uxxvx = 0, (6)

wt − wxxx − 3uxxwx = 0, (7)

was investigated by using Bäcklund transformation and Lax pair of this coupled equa-
tion.

In a new coupled Ramani equation was proposed in the form [1–8]

utt − uxxxxxt − 25

3
uxt uxxx − 5ux uxxxt − 5u2

x uxt − 10

3
uxxxx ut − 10uxx uxxt

−10ux uxx ut − 10

3
vuxt − 10

3
vx ut = 0,

vt − 1

2
(uxxxt + 3uxx ut + 3ux uxt ) = 0. (8)

Bilinear equations for Eq. (8) were given by using a dependent variable transformation
for u and v. Moreover, the Lax pair of (8) were given by

ψxxxxxx + 5uxψxxxx + 10uxxψxxx +
(

25

3
uxxx + 5u2

x + 10

3
v

)
ψxx

+
(

10

3
uxxxx + 10ux uxx + 10

3
vx

)
ψx + utψ − μψx = 0,

ψt −ψxxxxx −5uxψxxx − 5uxxψxx −
(

10

3
uxxx + 5u2

x + 10

3
v

)
ψx = 0. (9)

Explicit soliton solutions were not derived in [4], instead it was reported that such
solutions can be obtained. However, in [5], the method of dynamical systems was
used to derive travelling wave solutions.

We aim in this work to formally derive the multi-kink solutions and the multi-soliton
solutions for u and v of the modified coupled Ramani equation (8) to show its complete
integrability that was confirmed in [4]. The simplified form of Hirota’s method [9–21]
will be used to achieve this goal. The simplified Hirots’s method does not depend on
the construction of the bilinear forms, instead it assumes the multi-soliton solutions
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can be expressed as polynomials of exponential functions [11]. The multiple regular
soliton solutions and multiple singular soliton solutions for (8) will be derived using
this simplified method.

Conducting polymers, in the polymer chemistry, have received considerable
research work because of their unique features. It is to be noted that solitons appear
in many chemical applications such as electrically conducting polyenes, Polarons,
bipolarons,and bolitons in conducting polymers as examined in [22,23]. In [23], the
solitons, polarons and excitations in polyacetylene were examined. Polarons and bipo-
larons are studied as soliton–antisoliton pairs. At low doping levels, charged solitons
are formed either directly from existing neutral solitons or as the result of recombi-
nation among polarons [22,23]. The solitons in radiation chemistry was thoroughly
examined in [24,25]. In summary, it is noted that many of the solitons, both topological
and non-topological can be used to describe vector polarons. This confirms the fact
that solitons, and multi-solitons are heavily used in chemical applications.

2 A modified coupled Ramani equation

In this section we will study a new form of a coupled Ramani equation given by

utt − uxxxxxt − 25

3
uxt uxxx − 5ux uxxxt − 5u2

x uxt − 10

3
uxxxx ut − 10uxx uxxt

−10ux uxx ut − 10

3
vuxt − 10

3
vx ut = 0,

vt − 1

2
(uxxxt + 3uxx ut + 3ux uxt ) = 0. (10)

2.1 Multiple-soliton solutions

We first introduce an auxiliary variable z and set the new dependent variables

u(x, z, t) = R ln( f (x, z, t))x ,

v(x, z, t) =
(

fz

f

)
x
. (11)

Using the assumption

u(x, z, t) = eki x+ri z−ωi t , (12)

into the linear terms of (10) gives the dispersion relation by

ωi = −k5
i . (13)

This in turn gives the following phase variable

θi = ki x + ri z + k5
i t, i = 1, 2, 3. (14)
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Combining (11)–(14) and substituting the outcome in (10) results in a constraint con-
dition that solitons are guaranteed only if we set

ri = k3
i , i = 1, 2, 3. (15)

The multi soliton solutions of (10) are assumed above in (11), where the auxiliary
function f (x, z, t), for the single soliton solution, is given by

f (x, z, t) = 1 + eθ1 = 1 + ek1x+k3
1 z+k5

1 t . (16)

Substituting (16) into (10) and solving for R we find

R = 2. (17)

This in turn the single kink and the single soliton solutions

u(x, z, t) = 2k1ek1x+k3
1 z+k5

1 t

1 + ek1x+k3
1 z+k5

1 t
,

v(x, z, t) = k4
1ek1x+k3

1 z+k5
1 t

(1 + ek1x+k3
1 z+k5

1 t )2
, (18)

respectively, are readily obtained. Figure 1 below shows the single kink solution for
u(x, z, t) and the one soliton solution for v(x, z, t).

For the two soliton solutions we set the auxiliary function by

f (x, z, t) = 1 + ek1x+k3
1 z+k5

1 t + ek2x+k3
2 z+k5

2 t + a12e(k1+k2)x+(k3
1+k3

2)z+(k5
1+k5

2)t .

(19)
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Fig. 1 a One-kink solution with −5 ≤ t ≤ 5,−10 ≤ x ≤ 10, b one-soliton solution with −5 ≤ t ≤
5,−10 ≤ x ≤ 10
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Substituting (19) in (10), and proceeding as before we obtain the phase shift a12 by

a12 = k6
1 − k5

1k2 − k1k5
2 + k6

2

k6
1 + k5

1k2 + k1k5
2 + k6

2

. (20)

and hence we set

ai j = k6
i − k5

i k j − ki k5
j + k6

j

k6
i + k5

i k j + ki k5
j + k6

j

, 1 ≤ i < j ≤ 3. (21)

The two kink solutions for u(x, z, t) and the two soliton solutions for v(x, z, t) are
obtained by substituting (20) and (19) into (11).

It is interesting to point out that the coupled Ramani equation (10) does not show
any resonant phenomenon because the phase shift term a12 in (20) cannot be 0 or ∞
for |k1| �= |k2|.

Figure 2 below shows the two-kink solution for u(x, z, t) and the two-soliton solu-
tion for v(x, z, t).

For the three soliton solutions, we set the auxiliary function by

f (x, z, t) = 1 + ek1x+k3
1 z+k5

1 t + ek2x+k3
2 z+k5

2 t + ek3x+k3
3 z+k5

3 t

+a12e(k1+k2)x+(k3
1+k3

2)z+(k5
1+k5

2)t

+a13e(k1+k3)x+(k3
1+k3

3)z+(k5
1+k5

3)t + a23e(k2+k3)x+(k3
2+k3

3)z+(k5
2+k5

3)t

+b123e(k1++k2k3)x+(k3
1+k3

2+k3
3)z+(k5

1+k5
2+k5

3)t . (22)
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Fig. 2 a Two-kink solution with −5 ≤ t ≤ 5,−10 ≤ x ≤ 10, b two-soliton solution with −5 ≤ t ≤
5,−10 ≤ x ≤ 10
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Fig. 3 a Three-kink solution with −0.5 ≤ t ≤ 0.5,−10 ≤ x ≤ 10, b three-soliton solution with
−2 ≤ t ≤ 2,−10 ≤ x ≤ 10

Proceeding as before, we find

b123 = a12a23a13. (23)

The three kink solutions for u(x, z, t) and the three soliton solutions for v(x, z, t)
are obtained by substituting (22) into (10). It was stated before, the integrability of
the coupled Ramani equation (10) was formally proved in [4]. The results obtained
above confirm that the new coupled Ramani equation (10) is completely integrable
and N -soliton solutions can be obtained for finite N , where N ≥ 1,

Figure 3 below shows the three-kink solution for u(x, z, t) and the three-soliton
solution for v(x, z, t).

2.2 Multiple singular-soliton solutions

To determine one-soliton, two soliton and three-soliton solutions we set the auxiliary
functions in the forms

f (x, z, t) = 1 − ek1x+k3
1 z+k5

1 t (24)

f (x, z, t) = 1 − ek1x+k3
1 z+k5

1 t − ek2x+k3
2 z+k5

2 t + a12e(k1+k2)x+(k3
1+k3

2)z+(k5
1+k5

2)t ,

(25)

and

f (x, z, t) = 1 − ek1x+k3
1 z+k5

1 t − ek2x+k3
2 z+k5

2 t − ek3x+k3
3 z+k5

3 t

+a12e(k1+k2)x+(k3
1+k3

2)z+(k5
1+k5

2)t

+a13e(k1+k3)x+(k3
1+k3

3)z+(k5
1+k5

3)t + a23e(k2+k3)x+(k3
2+k3

3)z+(k5
2+k5

3)t
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−a12a13a23e(k1++k2k3)x+(k3
1+k3

2+k3
3)z+(k5

1+k5
2+k5

3)t . (26)

respectively. We follow the same analysis presented above, hence we skip details.
Using (11), the following one-singular kink and the one-soliton solutions are given by

u(x, z, t) = − 2k1ek1x+k3
1 z+k5

1 t

1 − ek1x+k3
1 z+k5

1 t
,

v(x, z, t) = − k4
1ek1x+k3

1 z+k5
1 t

(1 − ek1x+k3
1 z+k5

1 t )2
, (27)

respectively. Multiple singular solutions can be obtained in a like manner.

3 Discussion

A new integrable coupled Ramani equation was investigated. The simplified form of
the Hirota’s bilinear method was applied to conduct the analysis set for this work.
Multiple soliton solutions and multiple singular soliton solutions were obtained. The
resonance relation does not exist for this coupled Ramani equation.

It is to be noted that solitons are used in conducting polymers in the polymer chem-
istry. Solitons appear in many chemical applications such as electrically conducting
polyenes, Polarons, bipolarons,and bolitons in conducting polymers as examined in
[22,23]. This confirms the fact that solitons, and multi-solitons are heavily used in
chemical applications.
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